Combinatorial Constructions of Optimal (m, n, 4, 2) Optical Orthogonal Signature Pattern Codes

نویسندگان

  • Jingyuan Chen
  • Yun Li
  • Lijun Ji
چکیده

Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access (CDMA) network for 2-dimensional image transmission. There is a one-to-one correspondence between an (m,n,w, λ)-OOSPC and a (λ+ 1)-(mn,w, 1) packing design admitting an automorphism group isomorphic to Zm × Zn. In 2010, Sawa gave the first infinite class of (m,n, 4, 2)-OOSPCs by using S-cyclic Steiner quadruple systems. In this paper, we use various combinatorial designs such as strictly Zm×Zn-invariant s-fan designs, strictly Zm ×Zn-invariant G-designs and rotational Steiner quadruple systems to present some constructions for (m,n, 4, 2)-OOSPCs. As a consequence, our new constructions yield more infinite families of optimal (m,n, 4, 2)-OOSPCs. Especially, we shall see that in some cases an optimal (m,n, 4, 2)-OOSPC can not achieve the Johnson bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4

An optical orthogonal signature pattern code (OOSPC) finds application in transmitting 2-dimensional images through multicore fiber in code-division multiple-access (CDMA) communication systems. Observing a one-to-one correspondence between an OOSPC and a certain combinatorial subject, called a packing design, we present a construction of optimal OOSPCs with weight 4 and maximum collision param...

متن کامل

Combinatorial Constructions for Optical Orthogonal Codes

A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i ̸≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0, y1, . . . , yv−1) ∈ C with x ̸= y, and any integer i, where the subscripts are taken mo...

متن کامل

Combinatorial constructions for maximum optical orthogonal signature pattern codes

An (m, n, k, λa, λc) optical orthogonal signature pattern code (OOSPC) is a family C of m × n (0, 1)-matrices of Hamming weight k satisfying two correlation properties. OOSPCs find application in transmitting two-dimensional image through multicore fiber in CDMA networks. Let Θ(m, n, k, λa, λc) denote the largest possible number of codewords among all (m, n, k, λa, λc)-OOSPCs. An (m, n, k, λa, ...

متن کامل

Combinatorial constructions of optimal optical orthogonal codes with weight 4

A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i 6≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0,y1, . . ., yv−1) ∈ C with x 6= y, and any integer i, where the subscripts are take...

متن کامل

Optimal Three-Dimensional Optical Orthogonal Codes and Related Combinatorial Designs

Using channel polarization technique in optical code-division multiple access, we can spread optical pulses in the spatial domain, in addition to the time and frequency domains. The pattern of transmitting optical pulses in these three dimensions are specified by the codewords of a three-dimensional optical orthogonal codes (3-D OOC). In this work, combinatorial designs related to optimal 3-D O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.09289  شماره 

صفحات  -

تاریخ انتشار 2015